ON AN ENCOUNTER-EVASION DIFFERENTIAL GAME

PMM Vol. 38, № 4, 1974, pp. 580-589 A.G. CHENTSOV (Sverdlovsk) (Received February 22, 1974)

We investigate the conditions for the solvability of a differential game, based on a program construction analogous to [1, 2]. We quote the conditions for the existence of the equilibrium situation in pure strategies. The paper abuts the investigations in [1-8].

1. Consider the conflict-controlled system

$$dx/dt = f(t, x, u, v), \qquad x(t_0) = x_0$$

$$x \in \mathbb{R}^n, \quad u \in \mathbb{P} \subset \mathbb{R}^p, \quad v \in \mathbb{Q} \subset \mathbb{R}^q$$

Here $f(\cdot)$ is a function continuous in all arguments and continuously differentiable in x, satisfying the condition for uniform continuability of solutions formulated in [3, 7, 8], P and Q are the first and second player's compact sets of admissible controls.

A closed set Θ is delineated on the interval $[t_0, \vartheta_0]$. We assume that the function $\omega(\vartheta, x, m)$ is given on the set $\{(\vartheta, x, m) : (\vartheta, m) \in M, x \in \mathbb{R}^n\}$, where M is a compact subset of $\Theta \times \mathbb{R}^m$, and $\omega(\cdot)$ is continuous in all arguments and continuously differentiable in x in the region $\omega_0 < \omega < \omega^\circ$. Without loss of generality we assume that the sections

$$M_{\mathfrak{d}} = \{m : (\mathfrak{d}, m) \in M, m \in \mathbb{R}^m\}$$

are not empty for all $\vartheta \in \Theta$ and $\max_{\theta} \vartheta = \vartheta_{0}$.

We assume that the strategies U and V, the counterstrategy U_v , and the motions generated by them are defined analogously to [8] by passing to a limit from the corresponding Euler polygonal lines.

Problem 1. Construct a strategy U° or a counterstrategy U_{v}° which on any motion $x_{U^{\circ}}[t]$ and, respectively, $x_{U^{\circ}}[t]$ guarantees the fulfillment of the inequality

$$\min_{\boldsymbol{\theta}} \min_{\boldsymbol{M}_{\boldsymbol{\theta}}} \omega \left(\boldsymbol{\vartheta}, \ \boldsymbol{x}_{\boldsymbol{U}^{\boldsymbol{\theta}}}\left[\boldsymbol{\vartheta}\right], \ \boldsymbol{m}\right) \leqslant \varepsilon \tag{1.1}$$

$$\min_{\boldsymbol{\vartheta}} \min_{M_{\boldsymbol{\vartheta}}} \omega \left(\boldsymbol{\vartheta}, x_{U_{\boldsymbol{\vartheta}}}^{\bullet} \left[\boldsymbol{\vartheta}\right], m\right) \leqslant \varepsilon \tag{1.2}$$

where ε is a preassigned number.

Problem 2. Construct the pair of strategies (U°, V°) for which the inequality

$$\sup_{\substack{x_{U^{\bullet},V}[t] \\ min_{\theta} \min_{M_{\theta}} \omega(\vartheta, x^{\circ}[\vartheta], m) \leqslant \\ \inf_{\substack{x_{U,V^{\circ}[t] \\ min_{\theta} \min_{M_{\theta}} \omega(\vartheta, x^{\circ}[\vartheta], m) \leqslant \\ }}} \min_{M_{\theta} \omega(\vartheta, x_{U,V^{\circ}}[\vartheta], m)}$$

is fulfilled on every motion $x^{\circ}[t] = x_{U^{\circ}, V^{\circ}}[t]$ whatever be the strategies U, V.

Problem 3. Construct the strategy V° guaranteeing the inequality

$$\min_{\theta} \min_{M_{\mathbf{a}}} \omega(\vartheta, x_{V^{\bullet}}[\vartheta], m) \geqslant \varepsilon$$

on any motion $x_{V^{\circ}}[t]$; (ε is a given number).

2. Let us consider a modification of the program construction in [7, 8]. Let $\{H(m(\cdot)), [t_*, \vartheta]\}$ be the class of admissible program controls $\eta(\cdot), \{K(m(\cdot)), [t_*, \vartheta]\}$ be the class of the first player's program controls $\mu(\cdot), \{E(m(\cdot)), [t_*, \vartheta]\}$ be the class of the second player's program controls $\nu(\cdot)$, identified, respectively, with the collections of all regular Borel measures on the products $[t_*, \vartheta] \times P \times Q$, $[t_*, \vartheta] \times P$ and $[t_*, \vartheta] \times Q$, having Lebesgue projection on $[t_*, \vartheta]$ [7, 8]. Let $\sigma_{[t_*, \vartheta]}$ be the σ -algebra of Borel subsets on $[t_*, \vartheta]$. Then for every measure $\eta(\cdot) \in \{H(m(\cdot)), [t_*, \vartheta]\}$ there exists a function $\eta_t(\cdot)$, unique to within values on a set of Lebesgue measure zero, named below the instantaneous program control, whose values for each $t \in [t_*, \vartheta]$ are probabilities on $P \times Q$; moreover, for every Borel subset $K \subset P \times Q$ the function $\eta_t(K) \sigma_{[t_*, \vartheta]}$ is measurable and

$$\eta(\{(t, u, v): t \in \Gamma, (u, v) \in K\}) = \int_{\Gamma} \eta_t(K) m(dt)$$

for any Borel subsets $\Gamma \subseteq [t_*, \vartheta]$ and $K \subseteq P \times Q$. Analogously we define the first and second players' instantaneous program controls $\mu_l(\cdot)$ and $\nu_t(\cdot)$, corresponding to the measures $\mu(\cdot) \in \{K(m(\cdot)), [t_*, \vartheta]\}$ and $\nu(\cdot) \in \{E(m(\cdot)), [t_*, \vartheta]\}$, respectively.

For an arbitrary $\sigma_{[t_{\bullet}, \theta]}$ -measurable function $u(\cdot)$ we denote by $\delta_{u(t)}$ the instantaneous program control $\mu_t(\cdot)$ concentrated at the point $u_t = u(t)$ for each t. The notation $\delta_{v(t)}$ has an analogous meaning. Let

$$\{K^*(m(\cdot)), [t_*, \vartheta]\}, \{E^*(m(\cdot)), [t_*, \vartheta]\}$$

be subclasses of $\{K(m(\cdot)), [t_*, \vartheta]\}$ and $\{E(m(\cdot)), [t_*, \vartheta]\}$, consisting, respectively, of all such controls $\mu^*(\cdot)$ and $\nu^*(\cdot)$ that the instantaneous controls $\mu_t^*(\cdot)$ and $\nu_t^*(\cdot)$ corresponding to them are $\delta_{u^*(t)}$ and $\delta_{v^*(t)}$, respectively, where $u^*(t) \in P$, $v^*(t) \in Q$ are $\sigma_{[t_*, \vartheta]}$ -measurable vector-valued functions. By the weak convergence of the program controls $\eta(\cdot)$, $\mu(\cdot)$ and $\nu(\cdot)$ we mean their convergence in the *-weak topology of the spaces adjoint to $C([t_*, \vartheta] \times P \times Q)$, $C([t_*, \vartheta] \times P)$ and $C([t_*, \vartheta] \times Q)$, respectively. The following lemma can be proved by using the results in [7].

Lemma 2.1. The sets $\{K^* (m(\cdot)), [t_*, \vartheta]\}$ and $\{E^* (m(\cdot)), [t_*, \vartheta]\}$ are weakly dense in $\{K (m(\cdot)), [t_*, \vartheta]\}$ and $\{E (m(\cdot), [t_*, \vartheta]\}$, respectively. With an arbitrary position $(t_*, x_*), t_* \in [t_0, \vartheta_0]$ we associate the quantity

$$\varepsilon_{0}(t_{\bullet}, x_{\bullet}) = \max_{\{E(m(\cdot)), [t_{\bullet}, \theta_{\bullet}]\}} \min_{X(\cdot, t_{\bullet}, x_{\bullet}, \nu(\cdot))} \min_{\Theta_{t_{\bullet}}} \min_{M_{\Theta}} \omega(\vartheta, x(\vartheta), m) = (2.1)$$
$$\max_{\{E(m(\cdot)), [t_{\bullet}, \theta_{\bullet}]\}} \rho_{M}(X(\cdot, t_{\bullet}, x_{\bullet}, \nu(\cdot)))$$

where $X(\cdot, t_*, x_*, v(\cdot))$ is the sheaf of all program attainments [3, 7, 8] generated by the program { $\Pi(v(\cdot))$, $[t_*, \vartheta_0]$ } [7, 8], $\Theta_{t_*} = \Theta \cap [t_*, \vartheta_0]$. We emphasize that the corresponding maxima and minima in (2.1) are actually achieved, which follows from the weak compactness in itself of the programs of class { $E(m(\cdot)), [t_*, \vartheta_0]$ }, as well as from the results in [7]. Allowing for Lemma 2.1, we can show that

$$\varepsilon_0(t_{\bullet}, x_{\bullet}) = \sup_{\{v(\cdot)\}} \inf_{\{u(\cdot)\}} \min_{\theta_{t_{\bullet}}} \min_{M_{\Theta}} \omega(\vartheta, \varphi(\vartheta, t_{\bullet}, x_{\bullet}, u(\cdot), v(\cdot)), m)$$

where $\{u(\cdot)\}\$ and $\{v(\cdot)\}\$ are collections of all $\sigma_{[t_*,\vartheta]}$ -measurable functions, $\varphi(t, t_*, x_*, u(\cdot), v(\cdot))\$ is the solution of the differential equation

$$dx/dt = f(t, x, u(t), v(t)), \quad x(t_*) = x_*$$

We note that in the expression for $\varepsilon_0(\cdot)$ the sets $\{u(\cdot)\}\$ and $\{v(\cdot)\}\$ can also be assumed to be the sets of all piecewise-constant vector-valued functions with values in P and Q, respectively. We can define the quantity $\rho_M(X(\cdot, t_*, x_*, v(\cdot)))$ occurring in (2.1) also in terms of the attainability region [1] $G(\vartheta, t_*, x_*, v(\cdot))$ for the program $\{\Pi(v(\cdot)), [t_*, \vartheta_0]\}\$ in the following way:

$$\rho_M(X(\cdot, t_{\bullet}, x_{\bullet}, \mathbf{v}(\cdot)) = \min_{\boldsymbol{\theta}_{t_{\bullet}}} \min_{G(\boldsymbol{\theta}, t_{\bullet}, x_{\bullet}, \mathbf{v}(\cdot))} \min_{M_{\boldsymbol{\theta}}} \omega(\boldsymbol{\vartheta}, x, m)$$

By $\sigma(t_*, x_*)$ we denote the set of all optimal program controls of the second player, which yield the maximum in (2, 1), and by $X^{\circ}(\cdot, t_*, x_*, v(\cdot))$ and $\{\Pi(v(\cdot)), [t_*, \vartheta_0] | t_*, x_*\}_0$ we denote the set of all program motions optimal in the sheaf $X(\cdot, t_*, x_*, v(\cdot))$ [2, 3, 7, 8] and the set of optimal controls from the program $\{\Pi(v(\cdot)), [t_*, \vartheta_0]\}$, respectively: for each $x^{\circ}(\cdot) \in X^{\circ}(\cdot, t_*, x_*, v(\cdot))$

$$\rho_M(X(\cdot, t_{\bullet}, x_{\bullet}, v(\cdot))) = \min_{\Theta_{t_{\bullet}}} \min_{M_{\Theta}} \omega(\vartheta, x^{\circ}(\vartheta), m)$$

For each control $\eta(\cdot) \subseteq \{H(m(\cdot)), [t_*, \vartheta_0]\}$. We introduce the set $\Theta(t_*, x_*, \eta(\cdot))$ of all instants ϑ° which yield

$$\min_{\boldsymbol{\theta}_{t_{\bullet}}} \min_{\boldsymbol{M}_{\boldsymbol{\vartheta}}} \omega(\boldsymbol{\vartheta}, \boldsymbol{\varphi}(\boldsymbol{\vartheta}, t_{\bullet}, \boldsymbol{x}_{\bullet}, \boldsymbol{\eta}(\cdot)), \boldsymbol{m})$$

Here $\varphi(\cdot, t_*, x_*, \eta(\cdot))$ is the program motion from position (t_*, x_*) , generated by control $\eta(\cdot)$. In addition, let

$$\begin{split} \Theta(t_{\bullet}, x_{\bullet}, \mathbf{v}(\cdot)) &= \bigcup_{\substack{\{\Pi(\mathbf{v}(\cdot)), [t_{\bullet}, \vartheta_{\Theta}] \mid t_{\bullet}, x_{\bullet}\}_{\Theta}} \Theta(t_{\bullet}, x_{\bullet}, \eta(\cdot)) \\ \Theta(t_{\bullet}, x_{\bullet}) &= \bigcup_{\sigma(t_{\bullet}, x_{\bullet})} \Theta(t_{\bullet}, x_{\bullet}, \mathbf{v}(\cdot)) \\ M^{\circ}(\eta(\cdot), \vartheta, t_{\bullet}, x_{\bullet}) &= \{m^{\circ} : m^{\circ} \in M_{\vartheta}, \min_{M_{\vartheta}} \omega(\vartheta, \varphi(\vartheta, t_{\bullet}, x_{\bullet}, \eta(\cdot)), m^{\circ})\} \end{split}$$

Then for every position $(\omega_0 < \varepsilon_0 (i_*, x_*) < \omega^\circ)$ and control $v_0(\cdot) \in \Sigma(t_*, x_*)$ we denote by $S_0(t_*, x_*, v_0(\cdot))$ the set of all vectors s_0 for which

$$s_0' = \left[\frac{\partial}{\partial x}\omega(\vartheta^\circ, \varphi(\vartheta^\circ, t_{\star}, x_{\star}, \eta_0(\cdot)), m_0)\right] S(\vartheta^\circ, t_{\star}, \varphi_0(\cdot), \eta_0(\cdot))$$

where $S(\vartheta, t, \varphi_0(\cdot), \eta_0(\cdot))$ is the fundamental solution matrix [3, 7] for the variational equation corresponding to the control $\eta_0(\cdot)$ and to the program motion

$$\begin{aligned} \varphi_0\left(\cdot\right) &= \varphi\left(\cdot, \ t_*, \ x_*, \ \eta_0\left(\cdot\right)\right) \\ \eta_0\left(\cdot\right) &\in \{\Pi\left(\nu_0\left(\cdot\right)\right), \ [t_*, \ \vartheta_0] \mid t_*, \ x_*\}_0, \ \vartheta^\circ \in \Theta\left(t_*, \ x_*, \ \eta_0\left(\cdot\right)\right) \\ m_0 &\in M^\circ\left(\eta_0\left(\cdot\right), \ \vartheta^\circ, \ t_*, \ x_*\right) \end{aligned}$$

We also introduce the set

A.G.Chentsov

$$S_0(t_\star, x_\star) = \bigcup_{\Sigma(t_\star, x_\star)} S_0(t_\star, x_\star, v(\cdot))$$

The control optimal in program necessarily satisfies the following condition which expresses Pontriagin's maximum principle [6] in the given program problem.

Theorem 2.1. Let $\rho_M(X(\cdot, t_*, x_*, \nu(\cdot))) \in (\omega_0, \omega^\circ)$. Then for every control $\eta_0(\cdot) \in \{\Pi(\nu(\cdot)), [t_*, \vartheta_0] \mid t_*, x_*\}_0$, for the instant $\vartheta^\circ \in \Theta(t_*, x_*, \eta_0(\cdot))$ and for the point $m_0 \in M^\circ(\eta_0(\cdot), \vartheta^\circ, t_*, x_*)$ the equality

$$\int_{\Delta} \int_{P} \int_{Q} s_0'(t) f(t, \varphi_0(t), u, v) \eta_0(dt \times du \times dv) = \int_{\Delta} \int_{Q} \min_{P} [s_0'(t) f(t, \varphi_0(t), u, v)] v(dt \times dv)$$

is fulfilled on every set $\Lambda \equiv \sigma_{[t_*, 0^\circ]}$. Here

$$egin{aligned} &s_0{}'(t) = \left[rac{\partial}{\partial x} \, \omega(artheta^\circ, arphi_0(artheta^\circ), m_0)
ight]' S(artheta^\circ, t, arphi_0(\cdot), \eta_0(\cdot)) \ & arphi_0\left(t
ight) = arphi\left(t, t_{m{*}}, x_{m{*}}, \eta_0\left(\cdot
ight)
ight) \end{aligned}$$

We say that a control $v_0(\cdot) \in \Sigma(t_*, x_*)$ is regular if it satisfies the following conditions:

1) The set $\Theta(t_*, x_*, v_0(\cdot))$ consists of the single point $\vartheta^\circ = \vartheta^\circ(t_*, x_*, v_0(\cdot))$.

2) Every control $\eta^{\circ\circ}(\cdot) \in \{\Pi(v_0(\cdot)), [t_*, \vartheta_0] \mid t_*, x_*\}_0$ coincides on Borel subsets of the product $[t_*, \vartheta^{\circ}] \times P \times Q$ with some program control $\eta_0(\cdot) \in \{\Pi(v_0(\cdot)), [t_*, \vartheta^{\circ}]\}$, where $\{\Pi(v_0(\cdot)), [t_*, \vartheta^{\circ}]\}$ is the program of the segment $[t_*, \vartheta^{\circ}]$, corresponding to the control $v_0(\cdot)$ [7].

3) The set $M^{\circ}(\eta_{0}(\cdot), \vartheta^{\circ}, t_{*}, x_{*})$ consists of the single point m_{0} . Theorem 2.2. Let $\varepsilon_{0}(t_{*}, x_{*}) \in (\omega_{0}, \omega^{\circ})$ and let the control $v_{0}(\cdot) \in \Sigma(t_{*}, x_{*})$ be regular. Then every control $\eta^{\circ\circ}(\cdot) \in \{\Pi(v_{0}(\cdot)), [t_{*}, \vartheta_{0}] \mid t_{*}, x_{*}\}_{0}$, solving (2.1) necessarily satisfies the following maximin condition:

$$\int_{\Delta} \int_{P} \int_{Q} \int_{Q} s_0'(t) f(t, \varphi^{\circ \circ}(t), u, v) \eta^{\circ \circ}(dt \times du \times dv) =$$
$$\int_{\Delta} \max_{Q} \min_{P} [s_0'(t) f(t, \varphi^{\circ \circ}(t), u, v)] m(dt)$$

Here

$$\begin{split} \varphi^{\circ\circ}\left(t\right) &= \varphi\left(t, t_{*}, x_{*}, \eta^{\circ\circ}\left(\cdot\right)\right) \\ s_{0}'(t) &= \left[\frac{\partial}{\partial x}\omega(v^{\circ}, \varphi^{\circ\circ}(v^{\circ}), m^{\circ\circ})\right] S(\vartheta^{\circ}, t, \varphi^{\circ\circ}(\cdot), \eta^{\circ\circ}(\cdot)) \\ m^{\circ\circ} &\in M^{\circ}\left(\eta^{\circ\circ}\left(\cdot\right), \vartheta^{\circ}, t_{*}, x_{*}\right), \quad \vartheta^{\circ} &= \vartheta^{\circ}\left(t_{*}, x_{*}, v_{0}\left(\cdot\right)\right) \end{split}$$

(Δ is any Borel subset of the interval $[t_*, \vartheta^\circ]$).

The proof is carried out by a scheme analogous to the one in [7].

Using the properties of program motions we can show that the function $\varepsilon_0(t, x)$ is right-continuous at each position (t_*, x_*)

$$t_* \in [t_0, \ \vartheta_0) \setminus \Theta (t_*, \ x_*) \tag{2.2}$$

while the sets $\Theta(t_*, x_*, v(\cdot)) (v(\cdot) \in \{E(m(\cdot)), [t_*, \vartheta_0]\})$ and $\Theta(t_*, x_*)$ are closed. In addition, the sets $\Sigma(t, x)$ are weakly upper-semicontinuous by inclusion from

544

the right at each position (t_*, x_*) satisfying (2.2).

3. We implement the following auxiliary constructions. Let (t, x) and (t_*, x_*) be two positions $(t \ge t_*)$ and $\xi(\cdot)$ be the probability over Borel subsets Q, $v^{\circ}(\cdot) \in \Sigma(t, x)$ and $v_{\xi^{\circ}}(\cdot)$ obtained by splicing with probability $\xi(\cdot)$ by extending the constant control $\xi(\cdot)$ over the half-interval $[t_*, t)$ of the instantaneous control $v_{t_i}(\cdot)$. In the program $\{\Pi(v_{\xi^{\circ}}(\cdot)), [t_*, \vartheta_0]\}$ we select any control $\eta_{\xi^{\circ}}(\cdot)$ optimal for the position (t_*, x_*) , while in the set $\Theta(t_*, x_*, \eta_{\xi^{\circ}}(\cdot))$ we select any point $\vartheta_{\xi^{\circ}}$. Next, from the set $M^{\circ}(\eta_{\xi^{\circ}}(\cdot), \vartheta_{\xi^{\circ}}, t_*, x_*)$ we choose any element $m_{\xi^{\circ}}$. By $O_{\delta}(t_*, x_*)$ we denote the right δ -semineighborhood of position (t_*, x_*) : $0 \le t - t_* < \delta$, $||x - x_*|| < \delta$.

Lemma 3.1. For any position (t_*, x_*) , $t_* \in [t_0, \vartheta_0)$ and any number $\alpha > 0$ there exists $\delta > 0$ such that for an arbitrary choice of position $(t, x) \in O_{\delta}(t_*, x_*)$ the controls $v^{\circ}(\cdot) \in \Sigma(t, x)$, $\xi(\cdot)$ and $\eta_{\xi^{\circ}}(\cdot) \in \{\Pi(v_{\xi^{\circ}}(\cdot)), [t_*, \vartheta_0] \mid t_*, x_*\}_0$

$$\Theta(t_*, x_*, r_{\mathbf{\xi}}^{\circ}(\cdot)) \subset \Theta(t_*, x_*)$$

The proof relies on the weak upper-semicontinuity by inclusion of the sets $\Sigma(t, x)$. By virtue of the closedness of set $\Theta(t_*, x_*)$ and of Lemma 3.1, for every position $(t_*, x_*), t_* \in [t_0, \vartheta_0) \setminus \Theta(t_*, x_*)$ there exists $\delta > 0$ such that for an arbitrary choice of $v^{\circ}(\cdot), \xi(\cdot), \eta_{\xi}^{\circ}(\cdot)$ from the appropriate sets

$$\Theta(t_*, x_*, \eta_{\mathbf{E}}^{\circ}(\cdot)) \subset \Theta_t$$

for every position from $O_{\delta}(t_{*}, x_{*})$. Below we assume that the adjacent position (t, x) is selected from this condition. The control from $\{\Pi(v^{\circ}(\cdot)), [t, \vartheta_{0}]\}$ coinciding with $\eta_{\xi^{\circ}}(\cdot)$ on $[t, \vartheta_{0}] \times P \times Q$ will be denoted by $\overline{\eta}_{\xi^{\circ}}(\cdot)$. Then we can show that for every position $(t_{*}, x_{*}), t_{*} \in [t_{0}, \vartheta_{0}) \setminus \Theta(t_{*}, x_{*})$, we can find, for any $\alpha > 0$, a $\delta > 0$ such that for every position $(t, x) \in O_{\delta}(t_{*}, x_{*})$

where

$$| \omega(\vartheta_{\xi}^{\circ}, \overline{\varphi}_{\xi}^{\circ}(\vartheta_{\xi}^{\circ}), m_{\xi}^{\circ}) - \varepsilon_{0}(t_{\bullet}, x_{\bullet}) | < \alpha$$
$$\overline{\varphi}_{\xi}^{\circ}(\vartheta_{\xi}^{\circ}) = \varphi(\vartheta_{\xi}^{\circ}, t, x, \overline{\eta}_{\xi}^{\circ}(\cdot))$$

for an arbitrary choice of $v^{\circ}(\cdot)$, $\xi(\cdot)$, $\eta_{\xi}^{\circ}(\cdot)$, ϑ_{ξ}° and m_{ξ}° from the appropriate sets. With due regard to this, for every position (t_*, x_*) satisfying the condition

$$\boldsymbol{\varepsilon}_{0}\left(t_{*}, x_{*}\right) \in \left(\boldsymbol{\omega}_{0}, \boldsymbol{\omega}^{\circ}\right), \quad t_{*} \in \left[t_{0}, \vartheta_{0}\right) \setminus \boldsymbol{\Theta}\left(t_{*}, x_{*}\right) \tag{3.1}$$

and for any position (t, x) from a sufficiently small right δ -semineighborhood of (t_*, x_*) , for each $v^{\circ}(\cdot) \in \Sigma(t, x)$ and $\xi(\cdot)$ we define the set $S_*(t, x \mid t_*, x_*, v^{\circ}(\cdot), \xi(\cdot))$ consisting of all vectors s such that

$$s' = \left[\frac{\partial}{\partial x}\omega(\vartheta_{\xi}^{\circ}, \overline{\varphi}_{\xi}^{\circ}(\vartheta_{\xi}^{\circ}), m_{\xi}^{\circ})\right]^{\bullet} S(\vartheta_{\xi}^{\circ}, t, \overline{\varphi}_{\xi}^{\circ}(\cdot), \eta_{\xi}^{\circ}(\cdot))$$
(3.2)

where

$$\begin{split} \eta_{\xi}^{\circ}(\cdot) & \Subset \{ \Pi(\mathsf{v}_{\xi}^{\circ}(\cdot)), \ [t_{\bullet}, \vartheta_{0}] \, | \, t_{\bullet}, x_{\bullet} \}_{0} \\ \vartheta_{\xi}^{\circ} & \boxdot \Theta(t_{\bullet}, x_{\bullet}, \eta_{\xi}^{\circ}(\cdot)), \ m_{\xi}^{\circ} & \boxdot M^{\circ}(\eta_{\xi}^{\circ}(\cdot), \vartheta_{\xi}^{\circ}, t_{\bullet}, x_{\bullet}) \end{split}$$

Lemma 3.2. For every position (t_*, x_*) satisfying (3.1) and for any number $\alpha > 0$ we can find $\delta > 0$ such that for each position $(t, x) \in O_{\delta}(t_*, x_*)$ there exists, for any control $v^{\circ}(\cdot) \in \Sigma(t, x)$, a control $v_0(\cdot) \in \Sigma(t_*, x_*)$ for which

$$\bigcup_{\substack{\{\xi(\cdot)\}_Q}} S_*(t, x | t_*, x_*, v^{\circ}(\cdot), \xi(\cdot)) =$$

$$S_*(t, x | t_*, x_*, v^{\circ}(\cdot)) \subset S_0^{\alpha}(t_*, x_*, v_0(\cdot))$$
(3.3)

where S^{α} is the α -neighborhood of set S in the Euclidean metric $||\cdot||$, while $\{\xi(\cdot)\}_Q$ is the collection of all probability measures on Q.

Below we assume the fulfillment of the following condition.

Condition A. For every position (t_*, x_*) satisfying (3.1) and for any control $v_0(\cdot) \in \Sigma(t_*, x_*)$ there exists a vector $v_0 \in Q$ for which the equality

$$\min_{P} s_{0}' f(t_{*}, x_{*}, u, v_{0}) = \max_{Q} \min_{P} s_{0}' f(t_{*}, x_{*}, u, v)$$

is fulfilled on every vector $s_0 \in S_0(t_*, x_*, v_0(\cdot))$.

Theorem 3.1. For every position (t_*, x_*) satisfying (3.1), with respect to any number $\gamma > 0$ we can find $\delta > 0$ such that for any position $(t, x) \in O_{\delta}(t_*, x_*)$

$$\begin{aligned} \varepsilon_0(t, x) &- \varepsilon_0(t_*, x_*) \leqslant \max_{S_0(t_*, x_*)} [s'(x - x_*) - (3.4)] \\ \max_Q \min_P s' f(t_*, x_*, u, v)(t - t_*)] &+ \gamma \max(t - t_*, \|x - x_*\|) \end{aligned}$$

Proof. Let (t_*, x_*) satisfy the lemma's conditions and α be any positive number. We assume that the adjacent position (t, x) is chosen from such a neighborhood of (t_*, x_*) that (3.3) is fulfilled (such a neighborhood exists by virtue of Lemma 3.2). On the other hand $\epsilon_0(t, x) - \epsilon_0(t_*, x_*) \leqslant \omega(\vartheta_{\xi}^\circ, \overline{\varphi_{\xi}}^\circ(\vartheta_{\xi}^\circ), m_{\xi}^\circ) - \omega(\vartheta_{\xi}^\circ, \varphi_{\xi}^\circ(\vartheta_{\xi}^\circ), m_{\xi}^\circ)$ (3.5)

for any $v^{\circ}(\cdot) \in \Sigma(t, x)$, $\xi(\cdot)$, $\eta_{\xi^{\circ}}(\cdot) \in \{\Pi(v_{\xi^{\circ}}(\cdot)), [t_{*}, \vartheta_{0}] \mid t_{*}, x_{*}\}_{0}$, $\vartheta_{\xi^{\circ}} \in \Theta(t_{*}, x_{*}, \eta_{\xi^{\circ}}(\cdot))$ and $m_{\xi^{\circ}} \in M^{\circ}(\eta_{\xi^{\circ}}(\cdot), \vartheta_{\xi^{\circ}}, t_{*}, x_{*})$. Then, having chosen any control $v^{\circ}(\cdot) \in \Sigma(t, x)$, we choose a control $v_{0}(\cdot) \in \Sigma(t_{*}, x_{*})$ such that (3.3) is fulfilled, after which, with due regard to Condition A we select a probability $\xi(\cdot)$ such that the equality $\xi(\cdot)$

$$\min_{P} [s_0'f(t_*, x_*, u, v)] \xi(dv) = \max_{Q} \min_{P} s_0'f(t_*, x_*, u, v)$$

is fulfilled on any vector $s_0 \in S_0(t_*, x_*, v_0(\cdot))$. We use the indicated $v^{\circ}(\cdot)$ and $\xi(\cdot)$ in estimate (3.5). Subsequent derivation is carried out allowing for this estimate and for the differentiability of the function $\omega(\cdot)$ with respect to x as in [8].

4. Let W_{ε} be the set of all positions $(t, x), t \in [t_0, \vartheta_0]$, for which $\varepsilon_0(t, x) \leqslant \varepsilon$. This set is closed for every ε . We say that a probability $\mu(\cdot)$ on $P \times Q$ is consistent with the probability $\xi(\cdot)$ on Q if $\mu(P \times B) = \xi(B)$ for each Borel subset $B \subset Q$. (By a probability we mean a normed measure on a σ -algebra of Borel subsets of the corresponding space).

Condition B. For every position (t_*, x_*) satisfying (3.1) and for any probability $\xi(\cdot)$ on Q there exists a probability $\mu(\cdot)$ on $P \times Q$, consistent with $\xi(\cdot)$, such that $s_0' \int_{D} \int_{Q} f(t_*, x_*, u, v) \mu(du \times dv) \leqslant \max_Q \min_P s_0' f(t_*, x_*, u, v)$

uniformly with respect to $s_0 \in S_0(t_*, x_*)$.

Allowing for Theorem 3, 1, the following theorem is proved.

Theorem 4.1. Let Conditions A, B be fulfilled. Then the sets W_{ε} are *u*-stable for every $\varepsilon \in [\omega_0, \omega^{\circ})$: for every position $(t_*, x_*) \in W_{\varepsilon}$, for the probability $\xi(\cdot)$

on Q and for an instant $t^* \in [t_*, \vartheta_0]$, in the family of all possible program motions on $[t_*, t^*]$, generated by controls from the program $\{\Pi(v^{(\xi)}(\cdot)), [t_*, t^*]\}$, we can find either a motion $\varphi^{\circ}(t)$ for which

$$\min_{\Theta \cap [t_*, t^*]} \min_{M_{\Theta}} \omega(\vartheta, \varphi^{\circ}(\vartheta), m) \leqslant \varepsilon$$

or a motion $\varphi_0(t)$ for which the position $(t, \varphi_0(t)) \in W_{\varepsilon}$ for all $t \in [t_*, t^*]$. Here $\nu^{(\xi)}(\cdot)$ is a control from class $\{E(m(\cdot)), [t_*, t^*]\}$ [8] such that the instantaneous control $\nu_t^{(\xi)}(\cdot)$ corresponding to it is the probability $\xi(\cdot)$ for almost all $t \in [t_*, t^*]$.

To obtain the necessary conditions for the *u*-stability of sets W_{ε} ($\varepsilon \in [\omega_0, \omega^{\circ})$) we implement the following auxiliary constructions. Once again let (t_*, x_*) and (t, x) be such that $t_* \in [t_0, \vartheta_0)$ and $t \ge t_*$. Further, let $v_0(\cdot) \in \Sigma(t_*, x_*)$, let $\bar{v}_0(\cdot) \in \{E(m(\cdot)), [t, \vartheta_0]\}$ and let it coincide with $v_0(\cdot)$ on $[t, \vartheta_0] \times Q$, and let

$$\begin{split} \overline{\eta}_0(\cdot) & \Subset \{ \Pi(\overline{\nu}_0(\cdot)), \ [t, \vartheta_0] \mid t, x \}_0 \\ \overline{\vartheta}^\circ & \Subset \Theta(t, x, \overline{\eta}_0(\cdot)), \quad \overline{m}_0 \in M^\circ(\overline{\eta}_0(\cdot), \ \overline{\vartheta}^\circ, t, x) \\ \eta_0(\cdot) & \Subset \{ \Pi(\nu_0(\cdot)), \ [t_*, \vartheta_0] \} \end{split}$$

where the values of measures $\eta_0(\cdot)$ and $\overline{\eta}_0(\cdot)$ coincide on the Borel subsets of $[t, \vartheta_0] \times P \times Q$. Then

$$\begin{aligned} \varepsilon_0(t, x) &- \varepsilon_0(t_*, x_*) \geqslant \omega(\overline{\vartheta}^\circ, \overline{\varphi}_0(\overline{\vartheta}^\circ), \overline{m}_0) - \omega(\overline{\vartheta}^\circ, \varphi_0(\overline{\vartheta}^\circ), \overline{m}_0) \quad (4.1) \\ \overline{\varphi}_0(\cdot) &= \varphi(\cdot, t_*, x_*, \overline{\eta}_0(\cdot)), \qquad \overline{\varphi}_0(\cdot) = \varphi(\cdot, t, x, \eta_0(\cdot)) \end{aligned}$$

We can show that for every position (t_*, x_*) , $t_* \in [t_0, \vartheta_0) \setminus \Theta(t_*, x_*)$, for any $\alpha > 0$ we can find $\delta > 0$ such that for any neighboring position $(t, x) \in O_{\delta}(t_*, x_*)$ $| \omega(\overline{\vartheta}^\circ, \overline{\varphi}_0(\overline{\vartheta}^\circ), \overline{m}_0) - \varepsilon_0(t_*, x_*) | < \alpha$

for an arbitrary choice of $v_0(\cdot)$, $\overline{\eta}_0(\cdot)$, $\overline{\vartheta}^\circ$ and \overline{m}_0 from the appropriate sets. Therefore, for every position (t_*, x_*) satisfying (3.1) and for any adjacent position (t, x)from a sufficiently small right δ -semineighborhood of (t_*, x_*) we can determine, for each control $v_0(\cdot) \subseteq \Sigma(t_*, x_*)$, the set $S^*(t, x \mid t_*, x_*, v_0(\cdot))$ of all vectors s

$$s' = \left[\frac{\partial}{\partial x}\omega\left(\overline{\vartheta}^{\circ}, \ \overline{\varphi}_{0}\left(\overline{\vartheta}^{\circ}\right), \ \overline{m}_{0}\right)\right]' S\left(\overline{\vartheta}^{\circ}, \ t, \ \overline{\varphi}_{0}\left(\cdot\right), \ \overline{\eta}_{0}\left(\cdot\right)\right)$$

Lemma 4.1. For any position (t_*, x_*) satisfying (3.1) and any control $v_0(\cdot) \in \Sigma(t_*, x_*)$, for every $\alpha > 0$ we can find $\delta > 0$ such that

$$S^{*}(t, x \mid t_{*}, x_{*}, v_{0}(\cdot)) \subset S_{0}^{\alpha}(t_{*}, x_{*}, v_{0}(\cdot))$$

for each position $(t, x) \in O_{\delta}(t_*, x_*)$.

Theorem 4.2. Let the set W_{ε} be *u*-stable for every $\varepsilon \in [\omega_0, \omega^\circ)$. Then for each position (t_*, x_*) satisfying (3.1) and for any probability $\xi(\cdot)$ on Q there exists a probability $\mu(\cdot)$ on $P \times Q$, consistent with $\xi(\cdot)$, such that

$$\min_{\mathbf{S}_{0}(t_{\star}, x_{\star}, v_{0}(\cdot))} \left[s_{0}' \int_{P} \int_{Q} f(t_{\star}, x_{\star}, u, v) \times \right]$$

$$\mu(du \times dv) - \max_{Q} \min_{P} s_{0}' f(t_{\star}, x_{\star}, u, v) \right] \leqslant 0$$

$$(4.2)$$

for each control $v_0(\cdot) \in \Sigma(t_*, x_*)$.

Plan of the proof. For every position satisfying the lemma's conditions there exists an instant $\tau^* > t_*$ such that for every preselected probability $\xi(\cdot)$ the inequality

$$\min_{\Theta \cap [t_*,\tau^*]} \min_{M_{\Theta}} \omega (\vartheta, \varphi, \vartheta (\vartheta, t_*, x_*, \eta (\cdot)), m) > \varepsilon_0 (t_*, x_*)$$

is fulfilled for any program motion φ (t, t_* , x_* , η (·)) for which η_t ($P \times B$) = ξ (B) for any Borel subsets of Q. By the definition of *u*-stability we conclude that for each probability ξ (·) there must exist a control η^* (·), consistent with ξ (·), such that

$$\varepsilon_0$$
 $(t, \varphi(t, t_*, x_*, \eta^*(\cdot))) \leqslant \varepsilon_0$ (t_*, x_*) for all $t \in [t_*, \tau^*]$

Assume that the theorem is incorrect. Then, with due regard to what we have said above, at the position (t_*, x_*) where (4, 2) is violated for some $\xi(.)$ and $v_0(.)$, for some sequence $\{\tau_n\}$ converging to t_* from the right $(\tau_n > t_*)$, we can use estimate (4, 1) just under that control $v_0(.)$ by which condition (4, 2) is violated for a preselected $\xi(.)$. But then, allowing for the differentiability of function $\omega(.)$ with respect to x and for Lemma 4.1, for sufficiently large n we obtain

$$\mathfrak{e}_0 \ (\mathfrak{r}_n, \ x_n) > \mathfrak{e}_0 \ (t_*, \ x_*), \qquad x_n = \mathbf{\phi} \ (\mathfrak{r}_n, \ t_*, \ x_*, \ \eta^* \ (\cdot))$$

Corollary. Suppose that under each control $v_0(\cdot) \subseteq \Sigma(t_*, x_*)$ the set $S_0(t_*, x_*, v_0(\cdot))$ consists of the single vector $s_0 = s_0(t_*, x_*, v_0(\cdot))$ for every position (t_*, x_*) satisfying (3.1). The Condition B is necessary and sufficient for the sets W_{ε} to be *u*-stable for any $\varepsilon \in [\omega_0, \omega^\circ)$.

5. Let U^e be the strategy extremal [2] to set W_e and let U_v^e be the counterstrategy [8] extremal to that same set.

Theorem 5.1. Let $\varepsilon = \varepsilon_0$ $(t_0, x_0) \in [\omega_0, \omega^\circ)$ and let Conditions A, B be fulfilled. Then, under the condition that a saddle point with respect to (u, v) exists in the small game [2], the strategy $U^\circ = U^e$ extremal to set W_{ε} solves Problem 1 by guaranteeing the fulfillment of (1.1).

Theorem 5.2. Let $\varepsilon = \varepsilon_0 (t_0, x_0) \subset [\omega_0, \omega^\circ)$ and let Conditions A, B be fulfilled. Then the counterstrategy $U_v^\circ = U_v^e$ extremal to set W_{ε} solves Problem 1 by guaranteeing here the fulfillment of (1.2).

For the control $v_0(\cdot) \in \Sigma(t_0, x_0)$ we form the set $W(v_0(\cdot))$ of all positions (t, w) $w = w(t, t, x, y(\cdot)) = w(\cdot) \subset (\Pi(w(\cdot)))$ [t \otimes])

$$w = \varphi(t, t_0, x_0, \eta(\cdot)), \quad \eta(\cdot) \in \{\Pi(v_0(\cdot)), [t_0, v_0]\}$$

Let V^e be the second player's strategy [8], extremal [2] to set $W(v_0(\cdot))$.

Theorem 5.3. Strategy V^e ensures the solution of Problem 3 for any $\varepsilon \leqslant \varepsilon_0$ (t_0, x_0) .

Plan of the proof. Let $x_{\Delta^{(i)}}[t]$ be an Euler polygonal line corresponding to the strategy V^e and let $\tau_k^{(i)} = t_*$ be a node of the partitioning $\Delta^{(i)}$, and

$$\begin{split} x_{*} &= x_{\Delta^{(i)}} \ [t_{*}] \equiv W_{t_{*}} (v_{0} (\cdot)) \\ W_{t_{*}} (v_{0} (\cdot)) &= \{ w : (t_{*}, w) \in W (v_{0} (\cdot)) \} \end{split}$$

In addition, let $v^e = v[t_*]$, u[t] be the control realizing the given Euler polygonal line, s be the vector $w^o - x_*$, where w^o is a point of set $W_{t+}(v_0(\cdot))$ closest to x_* in the

548

Euclidean metric and

$$\min_{P} s' f(t_{*}, x_{*}, u, v^{e}) = \max_{Q} \min_{R} s' f(t_{*}, x_{*}, u, v)$$

Then, in the program $\{\Pi (v_0 (\cdot)), [\tau_k^{(i)}, \tau_{k+1}^{(i)}]\}$ we can find a control $\eta^* (\cdot)$ such that

$$s' \int_{t_{\bullet}}^{t} \int_{P} \bigcup_{Q} f(t_{\bullet}, x_{\bullet}, u, v) \eta^{\bullet} (d\tau \times du \times dv) = \int_{t_{\bullet}}^{t} \int_{Q} \min_{P} \left[s'f(t_{\bullet}, x_{\bullet}, u, v) \right] v_{0} (d\tau \times dv)$$

for every $t \in [\tau_k^{(i)}, \tau_{k+1}^{(i)}]$. Hence, with due regard to the inequalities

$$s' \int_{t_{\star}}^{t} f(t_{\star}, x_{\star}, u[\tau], v') m(d\tau) \ge \int_{t_{\star}}^{t} \max_{Q} \min_{P} [s'f(t_{\star}, x_{\star}, u, v)] m(d\tau) \ge \int_{t_{\star}}^{t} \int_{t_{\star}}^{t} \min_{P} [s'f(t_{\star}, x_{\star}, u, v)] v_{0}(d\tau \times dv)$$

we derive a local estimate analogous to the one used in [4]. From this estimate, in analogy with [4], we derive the barrier properties of strategy V^e.

Theorem 5.4. Let $\varepsilon = \varepsilon_0 (t_0, x_0) \subset [\omega_0, \omega^\circ)$ and let Conditions A, B and the small game saddle point condition be fulfilled. Then the pair of strategies $(U^\circ = U^e, V^\circ = V^e)$ solves Problem 2. Here $\varepsilon = \varepsilon_0 (t_0, x_0)$ is the value of the game in pure strategies.

Problems 1-3 admit of an intuitive representation when M is a closed subset of $\Theta \times \mathbb{R}^n$, and $\omega(\mathfrak{F}, x, m) = ||x - m||$. The possible noncompactness of M is unessential here since the problem reduces to an encounter-evasion problem with some compact subset of M.

The author thanks N. N. Krasovskii for his constant attention to the work.

REFERENCES

- Krasovskii, N. N., Game Problems on the Contact of Motions. Moscow, "Nauka", 1970.
- Krasovskii, N. N., A differential game of encounter-evasion, I, II. Izv. Akad. Nauk SSSR, Tekhn. Kibernetika, №№2, 3, 1973.
- Batukhtin, V.D. and Krasovskii, N.N., Problem of program control by maximin. Izv. Akad. Nauk SSSR, Tekhn. Kibernetika, № 6, 1972.
- Krasovskii, N. N. and Subbotin, A. I., An alternative for the game problem of convergence. PMM Vol.34, №6, 1970.
- 5. Pshenichnyi, B. N., Structure of differential games. In: Theory of Optimal Solutions, №1, Kiev, 1968.
- 6. Pontriagin, L.S., Boltianskii, V.G., Gamkrelidze, R.V. and Mishchenko, E.F., The Mathematical Theory of Optimal Processes. (English translation), Pergamon Press, Book № 10176, 1964.
- Chentsov, A. G., On a game problem of program control. Dokl. Akad. Nauk SSSR, Vol. 213, №2, 1973.
- Chentsov, A.G., On encounter-evasion game problems. PMM Vol.38, №2, 1974.