ON AN ENCOUNTER-EVASION DIFFERENTIAL GAME

PMM Vol. 38, № 4, 1974, pp. 580-589
A. G. CHENTSOV
(Sverdlovsk)
(Recelved February 22, 1974)

We investigate the conditions for the solvability of a differential game, based on a program construction analogous to $[1,2]$. We quote the conditions for the existence of the equilibrium situation in pure strategies. The paper abuts the investigations in [1-8].

1. Consider the conflict-controlled system

$$
\begin{aligned}
& d x / d t=f(t, x, u, v), \quad x\left(t_{0}\right)=x_{0} \\
& x \in R^{n}, \quad u \in P \subset R^{p}, \quad v \in Q \subset R^{q}
\end{aligned}
$$

Here $f(\cdot)$ is a function continuous in all arguments and continuously differentiable in x, satisfying the condition for uniform continuability of solutions formulated in $[3,7,8]$, P and Q are the first and second player's compact sets of admissible controls.

A closed set θ is delineated on the interval $\left[t_{0}, \boldsymbol{\vartheta}_{0}\right]$. We assume that the function $\omega(\vartheta, x, m)$ is given on the set $\left\{(\vartheta, x, m):(\vartheta, m) \in M, x \in R^{n}\right\}$, where M is a compact subset of $\Theta \times R^{m}$, and $\omega(\cdot)$ is continuous in all arguments and continuously differentiable in x in the region $\omega_{0}<\omega<\omega^{\circ}$. Without loss of generality we assume that the sections

$$
M_{\vartheta}=\left\{m:(\vartheta, m) \in M, m \in R^{m}\right\}
$$

are not empty for all $\vartheta \in \Theta$ and $\max _{\theta} \vartheta=\vartheta_{0}$.
We assume that the strategies U and V, the counterstrategy U_{v}, and the motions generated by them are defined analogoasly to [8] by passing to a limit from the corresponding Euler polygonal lines.

Problem 1. Construct a strategy U° or a counterstrategy $U_{0}{ }^{\circ}$ which on any motion $x_{U^{\circ}}[t]$ and, respectively, $x_{U_{v}}{ }^{\circ}[t]$ guarantees the fulfillment of the inequality

$$
\begin{array}{ll}
\min _{\theta} \min _{M_{\theta}} & \omega\left(\vartheta, x_{U^{\bullet}}[\vartheta], m\right) \leqslant \varepsilon \\
\min _{\theta} \min _{M_{\theta}} \omega\left(\vartheta, x_{U_{v}}[\vartheta], m\right) \leqslant \varepsilon \tag{1.2}
\end{array}
$$

where ε is a preassigned number.
Problem 2. Construct the pair of strategies (U°, V°) for which the inequality

$$
\begin{aligned}
& \sup _{\left\{x_{U^{\circ}, V}[t]\right\}} \min _{\Theta} \min _{M_{\theta}} \omega\left(\vartheta, x_{U^{\circ}, V}[\vartheta], m\right) \leqslant \\
& \min _{\theta} \min _{M_{\theta}} \omega\left(\vartheta, x^{\circ}[\vartheta], m\right) \leqslant \\
& \inf _{\left\{x_{\left.U, V^{\circ}[t]\right\}}\right.} \min _{\theta} \min _{M_{\theta}} \omega\left(\vartheta, x_{\left.U, V^{\circ}[\vartheta], m\right)}\right.
\end{aligned}
$$

is fulfilled on every motion $x^{\circ}[t]=x_{U^{\circ}, v^{\circ}}[t]$ whatever be the strategies U, V.

Problem 3. Construct the strategy V° guaranteeing the inequality

$$
\min _{\theta} \min _{M_{\theta}} \omega\left(\vartheta, x_{V^{\circ}}[\vartheta], m\right) \geqslant \varepsilon
$$

on any motion $x_{V^{\circ}}[t]$; (ε is a given number).
2. Let us consider a modification of the program construction in [7, 8]. Let
$\left\{H(m(\cdot)),\left[t_{*}, \vartheta\right]\right\}$ be the class of admissible program controls $\eta(\cdot),\{K(m(\cdot))$, [$\left.\left.t_{*}, \vartheta\right]\right\}$ be the class of the first player's program controls $\mu(\cdot),\left\{E(m(\cdot)),\left[t_{*}, \vartheta\right]\right\}$ be the class of the second player's program controls $v(\cdot)$, identified, respectively, with the collections of all regular Borel measures on the products $\left[t_{*}, \vartheta\right] \times P \times Q$, $\left[t_{*}\right.$, $\vartheta] \times P$ and $\left[t_{*}, \vartheta\right] \times Q$, having Lebesgue projection on $\left[t_{*}, \vartheta\right][7,8]$. Let $\sigma_{\left[t_{*}, \vartheta\right]}$ be the σ-algebra of Borel subsets on $\left[t_{*}, \vartheta\right]$. Then for every measure $\eta(\cdot) \in$ $\left\{H(m(\cdot)),\left[t_{*}, \vartheta\right]\right\}$ there exists a function $\eta_{t}(\cdot)$, unique to within values on a set of Lebesgue measure zero, named below the instantaneous program control, whose values for each $t \in\left[t_{*}, \vartheta\right]$ are probabilities on $P \times Q$: moreover, for every Borel subset $K \subset P \times Q$ the function $\eta_{t}(K) \sigma_{\left[t_{*}, \theta_{]}\right.}$is measurable and

$$
\eta(\{(t, u, v): t \in \Gamma,(u, v) \in K\})=\int_{\Gamma} \eta_{t}(K) m(d t)
$$

for any Borel subsets $\Gamma \subset\left[t_{*}, \vartheta\right]$ and $K \subset P \times Q$. Analogously we define the first and second players' instantaneous program controls $\mu_{l}(\cdot)$ and $v_{t}(\cdot)$, corresponding to the measures $\mu(\cdot) \in\left\{K(m(\cdot)),\left[t_{*}, \vartheta\right]\right\}$ and $v(\cdot) \in\left\{E(m(\cdot)),\left[t_{*}, \vartheta\right]\right\}$, respectively.

For an arbitrary $\sigma_{\left[t_{*}, \theta\right]}$-measurable function $u(\cdot)$ we denote by $\delta_{u(t)}$ the instantaneous program control $\mu_{t}(\cdot)$ concentrated at the point $u_{t}=u(t)$ for each t. The notation $\delta_{v(t)}$ has an analogous meaning. Let

$$
\left\{K^{*}(m(\cdot)), \quad\left[t_{*}, \vartheta\right]\right\}, \quad\left\{E^{*}(m(\cdot)),\left[t_{*}, \quad \vartheta\right]\right\}
$$

be subclasses of $\left\{K(m(\cdot)),\left[t_{*}, \vartheta\right]\right\}$ and $\left\{E(m(\cdot)),\left[t_{*}, \vartheta\right]\right\}$, consisting, respectively, of all such controls $\mu^{*}(\cdot)$ and $v^{*}(\cdot)$ that the instantaneous controls $\mu_{t}^{*}(\cdot)$ and $v_{t}{ }^{*}(\cdot)$ corresponding to them are $\delta_{u^{*}(t)}$ and $\delta_{v^{*}(t)}$, respectively, where $u^{*}(t) \in$ $P, v^{*}(t) \in Q$ are $\sigma_{\left[t_{*}, \theta\right]}$-measurable vector-valued functions. By the weak convergence of the program controls $\eta(\cdot), \mu(\cdot)$ and $v(\cdot)$ we mean their convergence in the $*$-weak topology of the spaces adjoint to $C\left(\left[t_{*}, \vartheta\right] \times P \times Q\right), C\left(\left[t_{*}, \vartheta\right] \times\right.$ P) and $C\left(\left[t_{*}, \vartheta\right] \times Q\right)$, respectively. The following lemma can be proved by using the results in [7].

Lemma 2.1. The sets $\left\{K^{*}(m(\cdot)),\left[t_{*}, \vartheta\right]\right\}$, and $\left\{E^{*}(m(\cdot)),\left[t_{*}, \vartheta\right]\right\}$ are weakly dense in $\left\{K(m(\cdot)),\left[t_{*}, \vartheta\right\}\right\}$ and $\left\{E\left(m(\cdot),\left[t_{*}, \vartheta\right]\right\}\right.$, respectively.

With an arbitrary position $\left(t_{*}, x_{*}\right), t_{*} \in\left[t_{0}, \vartheta_{0}\right]$ we associate the quantity

$$
\begin{aligned}
\varepsilon_{0}\left(t_{*}, x_{*}\right)= & \max _{\left\{E(m(\cdot)),\left[t_{*}, \theta_{0}\right]\right\}} \min _{X\left(\cdot, t_{*}, x_{*}, v(\cdot)\right)} \min _{\theta_{t_{*}}} \min _{M_{\theta}} \omega(\vartheta, x(\vartheta), m)=(2,1) \\
& \max _{\left\{E(m(\cdot)),\left[t_{*}, \theta_{0}\right]\right\}} \rho_{M}\left(X\left(\cdot, t_{*}, x_{*}, v(\cdot)\right)\right)
\end{aligned}
$$

where $X\left(\cdot, t_{*}, x_{*}, \nu(\cdot)\right)$ is the sheaf of all program attainments $[3,7,8]$ generated by the program $\left\{\Pi(v(\cdot)),\left[t_{*}, \vartheta_{0}\right]\right\}[7,8], \Theta_{t_{*}}=\Theta \cap\left[t_{*}, \vartheta_{0}\right]$. We emphasize that the corresponding maxima and minima in (2.1) are actually achieved, which follows from the weak compactness in itself of the programs of class $\left\{E(m(\cdot)),\left[t_{*}, \vartheta_{0}\right]\right\}$,
as well as from the results in [7]. Allowing for Lemma 2.1, we can show that

$$
\varepsilon_{0}\left(t_{\bullet}, x_{*}\right)=\sup _{\{v(\cdot)\}} \inf _{\{u(\cdot)\}} \min _{\theta_{t_{*}}} \min _{M_{\theta}} \omega\left(\vartheta, \varphi\left(\vartheta, t_{*}, x_{*}, u(\cdot), v(\cdot)\right), m\right)
$$

where $\{u(\cdot)\}$ and $\{v(\cdot)\}$ are collections of all $\sigma_{\left[t_{*}, \theta\right]}$-measurable functions, $\varphi(t$, $\left.t_{*}, x_{*}, u(\cdot), v(\cdot)\right)$ is the solution of the differential equation

$$
d x / d t=f(t, x, u(t), v(t)), \quad x\left(t_{*}\right)=x_{*}
$$

We note that in the expression for $\varepsilon_{0}(\cdot)$ the sets $\{u(\cdot)\}$ and $\{v(\cdot)\}$ can also be assumed to be the sets of all piecewise-constant vector-valued functions with values in P and Q, respectively. We can define the quantity $\rho_{M}\left(X\left(\cdot, t_{*}, x_{*}, v(\cdot)\right)\right)$ occurring in (2.1) also in terms of the attainability region [1] $G\left(\vartheta, t_{*}, x_{*}, v(\cdot)\right)$ for the program $\left\{\Pi(\nu(\cdot)),\left[t_{*}, \vartheta_{0}\right]\right\}$ in the following way:

$$
\rho_{M}\left(X\left(\cdot, t_{*}, x_{*}, v(\cdot)\right)=\min _{\theta_{t_{*}}} \min _{G\left(\theta, t_{*}, x_{*}, v(\cdot)\right)} \min _{M_{\vartheta}} \omega(\vartheta, x, m)\right.
$$

By $\sigma\left(t_{*}, x_{*}\right)$ we denote the set of all optimal program controls of the second player, which yield the maximum in (2.1), and by $X^{\circ}\left(\cdot, t_{*}, x_{*}, v(\cdot)\right)$ and $\{\Pi(v(\cdot))$, $\left.\left[t_{*}, \vartheta_{0}\right] \mid t_{*}, x_{*}\right\}_{0}$ we denote the set of all program motions optimal in the sheaf $X\left(\cdot, t_{*}, x_{*}, \quad v(\cdot)\right)[2,3,7,8]$ and the set of optimal controls from the program $\left\{\Pi(v(\cdot)),\left[t_{*}, \vartheta_{0}\right]\right\}$, respectively : for each $x^{\circ}(\cdot) \in X^{\circ}\left(\cdot, t_{*}, x_{*}, v(\cdot)\right)$

$$
\rho_{M}\left(X\left(\cdot, t_{*}, x_{*}, v(\cdot)\right)\right)=\min _{\theta_{t_{*}}} \min _{M_{\theta}} \omega\left(\vartheta, x^{\circ}(\vartheta), m\right)
$$

For each control $\eta(\cdot) \in\left\{H(m(\cdot)),\left[t_{*}, \vartheta_{0}\right]\right\}$. We introduce the set $\Theta\left(t_{*}, x_{*}\right.$, $\eta(\cdot))$ of all instants ϑ° which yield

$$
\min _{\theta_{t_{*}}} \min _{M_{\theta}} \omega\left(\vartheta, \varphi\left(\vartheta, t_{*}, x_{*}, \eta(\cdot)\right), m\right)
$$

Here $\varphi\left(\cdot, t_{*}, x_{*}, \eta(\cdot)\right)$ is the program motion from position $\left(t_{*}, x_{*}\right)$, generated by control $\eta(\cdot)$. In addition, let

$$
\begin{aligned}
& \Theta\left(t_{*}, x_{*}, v(\cdot)\right)=\bigcup_{\left\{(v(\cdot)),\left[t_{*}, \theta_{0}\right]\left|t_{*}, x_{*}\right\rangle \ell_{0}\right.}^{\Theta\left(t_{*}, x_{*}, \eta(\cdot)\right)} \\
& \Theta\left(t_{*}, x_{*}\right)=\bigcup_{\sigma\left(t_{*}, x_{*}\right)}^{\Theta\left(t_{*}, x_{*}, v(\cdot)\right)} \\
& M^{\circ}\left(\eta(\cdot), \vartheta, t_{*}, x_{*}\right)=\left\{m^{\circ}: m^{\circ} \in M_{\vartheta}, \min _{M_{\theta}} \omega(\vartheta,\right. \\
& \left.\left.\varphi\left(\vartheta, t_{*}, x_{*}, \eta(\cdot)\right), m\right)=\omega\left(\vartheta, \varphi,\left(\vartheta, t_{*}, x_{*}, \eta(\cdot)\right), m^{\circ}\right)\right\}
\end{aligned}
$$

Then for every position $\left(\omega_{0}<\varepsilon_{0}\left(i_{*}, x_{*}\right)<\omega^{\circ}\right)$ and control $v_{0}(\cdot) \in \Sigma\left(t_{*}, x_{*}\right)$ we denote by $S_{0}\left(t_{*}, x_{*}, v_{0}(\cdot)\right)$ the set of all vectors s_{0} for which

$$
s_{0}^{\prime}=\left[\frac{\partial}{\partial x} \omega\left(\vartheta^{\circ}, \varphi\left(\vartheta^{\bullet}, t_{*}, x_{*}, \eta_{0}(\cdot)\right), m_{0}\right)\right] S\left(\vartheta^{\circ}, t_{*}, \varphi_{0}(\cdot), \eta_{0}(\cdot)\right)
$$

where $S\left(\vartheta, t, \varphi_{0}(\cdot), \eta_{0}(\cdot)\right)$ is the fundamental solution matrix [3,7] for the variational equation corresponding to the control $\eta_{0}(\cdot)$ and to the program motion

$$
\begin{aligned}
& \varphi_{0}(\cdot)=\varphi\left(\cdot, t_{*}, x_{*}, \eta_{0}(\cdot)\right) \\
& \eta_{0}(\cdot) \in\left\{\Pi\left(v_{0}(\cdot)\right),\left[t_{*}, \vartheta_{0}\right] \mid t_{*}, x_{*}\right\}_{0}, \vartheta^{\circ} \in \Theta\left(t_{*}, x_{*}, \eta_{0}(\cdot)\right) \\
& m_{0} \in M^{\circ}\left(\eta_{0}(\cdot), \vartheta^{\circ}, t_{*}, x_{*}\right)
\end{aligned}
$$

We also introduce the set

$$
S_{0}\left(t_{*}, x_{*}\right)=\bigcup_{\Sigma\left(t_{*}, x_{*}\right)} S_{0}\left(t_{*}, x_{*}, v(\cdot)\right)
$$

The control optimal in program necessarily satisfies the following condition which expresses Pontriagin's maximum principle [6] in the given program problem.

Theorem 2.1. Let $\rho_{M}\left(X\left(\cdot, t_{*}, x_{*}, v(\cdot)\right)\right) \in\left(\omega_{0}, \omega^{\circ}\right)$. Then for every control $\eta_{0}(\cdot) \in\left\{\Pi(v(\cdot)),\left[t_{*}, \vartheta_{0}\right] \mid t_{*}, x_{*}\right\}_{0}$, for the instant $\vartheta^{\circ} \in \Theta\left(t_{*}, x_{*}\right.$, $\left.\eta_{0}(\cdot)\right)$ and for the point $m_{0} \in M^{\circ}\left(\eta_{0}(\cdot), \vartheta^{\circ}, t_{*}, x_{*}\right)$ the equality

$$
\iint_{\Delta} \int_{P} \int_{Q} s_{0}{ }^{\prime}(t) f\left(t, \varphi_{0}(t), u, v\right) \eta_{0}(d t \times d u \times d v)=\iint_{Q} \min _{P}\left[s_{0}{ }^{\prime}(t) f\left(t, \varphi_{0}(t), u, v\right)\right] v(d t \times d v)
$$

is fulfilled on every set $\Delta \in \sigma_{\left[t_{*}, \vartheta^{\circ}\right]}$. Here

$$
\begin{aligned}
& s_{0}{ }^{\prime}(t)=\left[\frac{\partial}{\partial x} \omega\left(\vartheta^{\circ}, \varphi_{0}\left(\vartheta^{c}\right), m_{0}\right)\right]^{\prime} S\left(\vartheta^{\circ}, t, \varphi_{0}(\cdot), \eta_{0}(\cdot)\right) \\
& \varphi_{0}(t)=\varphi\left(t, t_{*}, x_{*}, \eta_{0}(\cdot)\right)
\end{aligned}
$$

We say that a control $v_{0}(\cdot) \in \Sigma\left(t_{*}, x_{*}\right)$ is regular if it satisfies the following conditions:

1) The set $\Theta\left(t_{*}, x_{*}, v_{0}(\cdot)\right)$ consists of the single point $\vartheta^{\circ}=\vartheta^{\circ}\left(t_{*}, x_{*}\right.$, $\left.v_{0}(\cdot)\right)$.
2) Every control $\eta^{\circ 0}(\cdot) \in\left\{\Pi\left(v_{0}(\cdot)\right),\left[t_{*}, \vartheta_{0}\right] \mid t_{*}, x_{*}\right\}_{0}$ coincides on Borel subsets of the product $\left[t_{*}, \vartheta^{\circ}\right] \times P \times Q$ with some program control $\eta_{0}(\cdot) \in$ $\left\{\Pi\left(v_{0}(\cdot)\right),\left[t_{*}, \vartheta^{\circ}\right]\right\}$, where $\left\{\Pi\left(v_{0}(\cdot)\right),\left[t_{*}, \vartheta^{\circ}\right]\right\}$ is the program of the segment $\left[t_{*}\right.$, v°], corresponding to the control $v_{0}(\cdot)$ [7].
3) The set $M^{\circ}\left(\eta_{0}(\cdot), \vartheta^{\circ}, t_{*}, x_{*}\right)$ consists of the single point m_{0}.

Theorem 2.2. Let $\varepsilon_{0}\left(t_{*}, x_{*}\right) \in\left(\omega_{0}, \omega^{\circ}\right)$ and let the control $v_{0}(\cdot) \in$ $\Sigma\left(t_{*}, x_{*}\right)$ be regular. Then every control $\eta^{\circ \circ}(\cdot) \in\left\{\Pi\left(v_{0}(\cdot)\right),\left[t_{*}, \vartheta_{0}\right] \mid t_{*}\right.$, $\left.x_{*}\right\}_{0}$, solving (2,1) necessarily satisfies the following maximin condition:

$$
\begin{aligned}
& \int_{\Delta} \int_{P} \int_{Q} s_{0}{ }^{\prime}(t) f\left(t, \varphi^{o o}(t), u, v\right) \eta^{\circ o}(d t \times d u \times d v)= \\
& \int_{\Delta} \max _{Q} \min _{P}\left[s_{0}{ }^{\prime}(t) f\left(t, \varphi^{\circ o}(t), u, v\right)\right] m(d t)
\end{aligned}
$$

Here

$$
\begin{aligned}
& \varphi^{\circ \circ}(t)=\varphi\left(t, t_{*}, x_{*}, \eta^{\circ \circ}(\cdot)\right) \\
& s_{0}^{\prime}(t)=\left[\frac{\partial}{\partial x} \omega\left(v^{\circ}, \varphi^{\circ \circ}\left(v^{\circ}\right), m^{\circ \circ}\right)\right] S\left(\vartheta^{\circ}, t, \varphi^{\circ \circ}(\cdot), \eta^{\circ \circ}(\cdot)\right) \\
& m^{\circ \circ} \in M^{\circ}\left(\eta^{\circ \circ}(\cdot), \vartheta^{\circ}, t_{*}, x_{*}\right), \quad \vartheta^{\circ}=\vartheta^{\circ}\left(t_{*}, x_{*}, v_{0}(\cdot)\right)
\end{aligned}
$$

(Δ is any Borel subset of the interval $\left[t_{*}, \vartheta^{\circ}\right]$).
The proof is carried out by a scheme analogous to the one in [7].
Using the properties of program motions we can show that the function $\varepsilon_{0}(t, x)$ is right-continuous at each position $\left(t_{*}, x_{*}\right)$

$$
\begin{equation*}
t_{*} \in\left[t_{0}, \vartheta_{0}\right) \backslash \Theta\left(t_{*}, x_{*}\right) \tag{2.2}
\end{equation*}
$$

while the sets $\Theta\left(t_{*}, x_{*}, v(\cdot)\right)\left(v(\cdot) \in\left\{E(m(\cdot)),\left[t_{*}, \vartheta_{0}\right]\right\}\right)$ and $\Theta\left(t_{*}, x_{*}\right)$ are closed. In addition, the sets $\Sigma(t, x)$ are weakly upper-semicontinuous by inclusion from
the right at each position $\left(t_{*}, x_{*}\right)$ satisfying (2.2).
3. We implement the following auxiliary constructions. Let (t, x) and (t_{*}, x_{*}) be two positions $\left(t \geqslant t_{*}\right)$ and $\xi(\cdot)$ be the probability over Borel subsets Q, $\nu^{\circ}(\cdot) \in \Sigma(t, x)$ and $\nu_{\xi}^{\circ}(\cdot)$ obtained by splicing with probability $\xi(\cdot)$ by extending the constant control $\xi(\cdot)$ over the half-interval $\left[t_{*}, t\right)$ of the instantaneous control $v_{t}^{0}(\cdot)$. In the program $\left\{\Pi\left(v_{\xi} 0(\cdot)\right),\left[t_{*}, \vartheta_{0}\right]\right\}$ we select any control $\eta_{\xi}^{\circ}(\cdot)$ optimal for the position $\left(t_{*}, x_{*}\right)$, while in the set $\Theta\left(t_{*}, x_{*}, \eta_{\xi}^{\circ}(\cdot)\right)$ we select any point $\vartheta_{\xi}{ }^{\circ}$. Next, from the set $M^{\circ}\left(\eta_{\xi}^{\circ}(\cdot), \vartheta_{\xi}{ }^{\circ}, t_{*}, x_{*}\right)$ we choose any element $m_{\xi}{ }^{\circ}$. By $O_{\delta}\left(t_{*}, x_{*}\right)$ we denote the right δ-semineighborhood of position

$$
\left(t_{*}, \quad x_{*}\right): 0 \leqslant t-t_{*}<\delta,\left\|x-x_{*}\right\|<\delta
$$

Lemma 3.1. For any position $\left(t_{*}, x_{*}\right), t_{*} \in\left[t_{0}, \vartheta_{0}\right)$ and any number $\alpha>0$ there exists $\delta>0$ such that for an arbitrary choice of position $(t, x) \in O_{8}\left(t_{*}, x_{*}\right)$ the controls $\nu^{\circ}(\cdot) \in \Sigma(t, x), \xi(\cdot)$ and $\eta_{\varepsilon}^{\circ}(\cdot) \in\left\{\Pi\left(v_{\xi}^{\circ}(\cdot)\right),\left[t_{*}, \vartheta_{0}\right] \mid t_{*}, x_{*}\right\}_{0}$

$$
\Theta\left(t_{*}, x_{*}, r_{\xi}{ }^{0}(\cdot)\right) \subset \Theta\left(t_{*}, x_{*}\right)
$$

The proof relies on the weak upper-semicontinuity by inclusion of the sets $\Sigma(t, x)$.
By virtue of the closedness of set $\Theta\left(t_{*}, x_{*}\right)$ and of Lemma 3.1 , for every position $\left(t_{*}, x_{*}\right), t_{*} \in\left[t_{0}, \vartheta_{0}\right) \backslash \Theta\left(t_{*}, x_{*}\right)$ there exists $\delta>0$ such that for an arbitrary choice of $v^{\circ}(\cdot), \xi(\cdot), \eta_{\xi}^{\circ}(\cdot)$ from the appropriate sets

$$
\Theta\left(t_{*}, x_{*}, \eta_{\&}^{*}(\cdot)\right) \subset \Theta_{t}
$$

for every position from $O_{5}\left(t_{*}, x_{*}\right)$. Below we assume that the adjacent position (t, x) is selected from this condition. The control from $\left\{\Pi\left(v^{\circ}(\cdot)\right),\left[t, \mathscr{\vartheta}_{0}\right]\right\}$ coinciding with $\eta_{\bar{\xi}}^{0}(\cdot)$ on $\left[t, \hat{\vartheta}_{0}\right] \times P \times Q$ will be denoted by $\bar{\eta}_{\xi}^{\circ}(\cdot)$. Then we can show that for every position $\left(t_{*}, x_{*}\right), t_{*} \in\left[t_{0}, \vartheta_{0}\right) \backslash \Theta\left(t_{*}, x_{*}\right)$, we can find, for any $\alpha>0$. a $\delta>0$ such that for every position $(t, x) \in O_{\delta}\left(t_{*}, x_{*}\right)$

$$
\left|\omega\left(\vartheta_{\xi}^{\circ}, \bar{\varphi}_{\xi}^{0}\left(\vartheta_{\xi}^{0}\right), m_{\xi}^{\circ}\right)-\varepsilon_{0}\left(t_{*}, x_{*}\right)\right|<\alpha
$$

where

$$
\bar{\varphi}_{\xi}^{0}\left(\vartheta_{\xi}^{\circ}\right)=\varphi\left(\vartheta_{\xi}^{\circ}, t, x, \bar{\eta}_{\xi}^{0}(\cdot)\right)
$$

for an arbitrary choice of $\nu^{\circ}(\cdot), \xi(\cdot), \eta_{\xi}^{\circ}(\cdot), \vartheta_{\xi}{ }^{\circ}$ and $m_{\xi}{ }^{\circ}$ from the appropriate sets.
With due regard to this, for every position $\left(t_{*}, x_{*}\right)$ satisfying the condition

$$
\begin{equation*}
\varepsilon_{0}\left(t_{*}, x_{*}\right) \in\left(\omega_{0}, \omega^{\circ}\right), \quad t_{*} \in\left[t_{0}, \vartheta_{0}\right) \backslash \Theta\left(t_{*}, x_{*}\right) \tag{3.1}
\end{equation*}
$$

and for any position (t, x) from a sufficiently small right δ-semineighborhood of (t_{*}, $\left.x_{*}\right)$, for each $v^{0}(\cdot) \in \Sigma(t, x)$ and $\xi(\cdot)$ we define the set $S_{*}\left(t, x \mid t_{*}, x_{*}\right.$, $\left.v^{\circ}(\cdot), \xi(\cdot)\right)$ consisting of all vectors s such that

$$
\begin{equation*}
s^{\prime}=\left[\frac{\partial}{\partial x} \omega\left(\vartheta_{\xi}^{\circ}, \bar{\varphi}_{\xi}^{0}\left(\vartheta_{\xi}^{0}\right), m_{\xi}^{\circ}\right)\right] S\left(\vartheta_{\xi}^{0}, t, \bar{\varphi}_{\xi}^{\circ}(\cdot),{\overline{\eta_{\xi}}}_{0}^{0}(\cdot)\right) \tag{3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \eta_{\xi}^{\circ}(\cdot) \in\left\{\Pi\left(v_{\xi}{ }^{\circ}(\cdot)\right),\left[t_{*}, \vartheta_{0}\right] \mid t_{*}, x_{*}\right\}_{0} \\
& \vartheta_{\xi}^{\circ} \in \Theta\left(t_{*}, x_{*}, \eta_{\xi}{ }^{\circ}(\cdot)\right), m_{\xi}^{\circ} \in M^{\circ}\left(\eta_{\xi}^{\circ}(\cdot), \vartheta_{\xi}^{\circ}, t_{*}, x_{*}\right)
\end{aligned}
$$

Lemma 3.2. For every position $\left(t_{*}, x_{*}\right)$ satisfying (3.1) and for any number $\alpha>0$ we can find $\delta>0$ such that for each position $(t, x) \in O_{\delta}\left(t_{*}, x_{*}\right)$ there exists, for any control $v^{\circ}(\cdot) \in \Sigma(t, x)$, a control $v_{0}(\cdot) \in \Sigma\left(t_{*}, x_{*}\right)$ for which

$$
\begin{align*}
& \bigcup_{(\xi(\cdot),}^{Q} \tag{3.3}\\
& \quad S_{*}\left(t, x \mid t_{*}, x_{*}, v^{\circ}(\cdot), \xi(\cdot)\right)= \\
& \quad S_{*}\left(t, x \mid t_{*}, x_{*}, v^{\circ}(\cdot)\right) \subset S_{0}^{\alpha}\left(t_{*}, x_{*}, v_{0}(\cdot)\right)
\end{align*}
$$

where S^{α} is the $\alpha-$-neighborhood of set S in the Euclidean metric $\|\cdot\|$, while $\{\xi(\cdot)\}_{Q}$ is the collection of all probability measures on Q.

Below we assume the fulfillment of the following condition.
Condition A. For every position (t_{*}, x_{*}) satisfying (3.1) and for any control $v_{0}(\cdot) \in \Sigma\left(t_{*}, x_{*}\right)$ there exists a vector $v_{0} \in Q$ for which the equality

$$
\min _{P} s_{0}^{\prime} f\left(t_{*}, x_{*}, u, v_{0}\right)=\max _{Q} \min _{P} s_{0}^{\prime} f\left(t_{*}, x_{*}, u, v\right)
$$

is fulfilled on every vector $s_{0} \in S_{0}\left(t_{*}, x_{*}, v_{0}(\cdot)\right)$.
Theorem 3.1. For every position (t_{*}, x_{*}) satisfying (3.1), with respect to any number $\gamma>0$ we can find $\delta>0$ such that for any position $(t, x) \in O_{\delta}\left(t_{*}, x_{*}\right)$

$$
\begin{align*}
& \varepsilon_{0}(t, x)-\varepsilon_{0}\left(t_{*}, x_{*}\right) \leqslant \max _{S_{0}\left(t_{*}, x_{*}\right)}\left[s^{\prime}\left(x-x_{*}\right)-\right. \tag{3.4}\\
& \left.\quad \max _{Q} \min _{P} s^{\prime} f\left(t_{*}, x_{*}, u, v\right)\left(t-t_{*}\right)\right]+\gamma \max \left(t-t_{*},\left\|x-x_{*}\right\|\right)
\end{align*}
$$

Proof. Let $\left(t_{*}, x_{*}\right)$ satisfy the lemma's conditions and α be any positive number. We assume that the adjacent position (t, x) is chosen from such a neighborhood of $\left\langle t_{*}\right.$, x_{*}) that (3.3) is fulfilled (such a neighborhood exists by virtue of Lemma 3.2). On the other hand

$$
{ }_{\varepsilon_{0}}^{\text {and }}(t, x)-\varepsilon_{0}\left(t_{*}, x_{*}\right) \leqslant \omega\left(\vartheta_{\xi}^{0}, \bar{\varphi}_{\xi}^{0}\left(\vartheta_{\xi}^{0}\right), m_{\xi}^{0}\right)-\omega\left(\vartheta_{\xi}, \varphi_{\xi}^{0}\left(\vartheta_{\xi}^{\circ}\right), m_{\xi}^{0}\right)
$$

for any $v^{\circ}(\cdot) \in \Sigma(t, x), \xi(\cdot), \eta_{\xi}^{\circ}(\cdot) \in\left\{11\left(\nu_{\xi}{ }^{0}(\cdot)\right),\left[t_{*}, \vartheta_{0}\right] \mid \iota_{*}, x_{*}\right\}_{0}$, $\vartheta_{\xi}{ }^{\circ} \in \Theta\left(t_{*}, x_{*}, \eta_{\xi}^{\circ}(\cdot)\right)$ and $m_{\bar{\xi}}{ }^{\circ} \in M^{\circ}\left(\eta_{\xi}^{\circ}(\cdot), \vartheta_{\xi}{ }^{\circ}, t_{*}, x_{*}\right)$. Then, having chosen any control $v^{\circ}(\cdot) \in \Sigma(t, x)$, we choose a control $v_{0}(\cdot) \in \Sigma\left(t_{*}, x_{*}\right)$ such that (3.3) is fulfilled, after which, with due regard to Condition A we select a probability $\xi(\cdot)$ such that the equality

$$
\int_{Q} \min _{P}\left[s_{0}^{\prime} f\left(t_{*}, x_{*}, u, v\right)\right] \xi(d v)=\max _{Q} \min _{P} s_{0}^{\prime} f\left(t_{*}, x_{*}, u, v\right)
$$

is fulfilled on any vector $s_{0} \in S_{0}\left(t_{*}, x_{*}, v_{0}(\cdot)\right)$. We use the indicated $v^{\circ}(\cdot)$ and $\xi(\cdot)$ in estimate (3.5). Subsequent derivation is carried out allowing for this estimate and for the differentiability of the function $\omega(\cdot)$ with respect to x as in [8].
4. Let W_{ε} be the set of all positions $(t, x), t \in\left[t_{0}, \vartheta_{0}\right]$, for which $\varepsilon_{0}(t, x) \leqslant \varepsilon$. This set is closed for every ε. We say that a probability $\mu(\cdot)$ on $P \times Q$ is consistent with the probability $\xi(\cdot)$ on Q if $\mu(P \times B)=\xi(B)$ for each Borel subset $B \subset Q$. (By a probability we mean a normed measure on a σ-algebra of Borel subsets of the corresponding space).

Condition B. For every position (t_{*}, x_{*}) satisfying (3.1) and for any probability $\xi(\cdot)$ on Q there exists a probability $\mu(\cdot)$ on $P \times Q$, consistent with $\xi(\cdot)$, such that

$$
s_{0} \int_{P} \int_{Q} f\left(t_{*}, x_{*}, u, v\right) \mu(d u \times d v) \leqslant \max _{Q} \min _{P} s_{0}{ }^{\prime} f\left(t_{*}, x_{*}, u, v\right)
$$

uniformly with respect to $s_{0} \in S_{0}\left(t_{*}, x_{*}\right)$.
Allowing for Theorem 3.1, the following theorem is proved.
Theorem 4.1. Let Conditions A, B be fulfilled. Then the sets W_{ε} are u-stable for every $\varepsilon \in\left[\omega_{0}, \omega^{\circ}\right)$: for every position $\left(t_{*}, x_{*}\right) \in W_{\varepsilon}$, for the probability $\xi(\cdot)$
on Q and for an instant $t^{*} \in\left[t_{*}, \boldsymbol{\vartheta}_{0}\right]$, in the family of all possible program motions on $\left[t_{*}, t^{*}\right]$, generated by controls from the program $\left\{\Pi\left(\nu^{(\xi)}(\cdot)\right),\left[t_{*}, t^{*}\right]\right\}$, we can find either a motion $\varphi^{\circ}(t)$ for which

$$
\min _{\Theta \cap\left[t_{*}, t^{*}\right]} \min _{M_{\vartheta}} \omega\left(\vartheta, \varphi^{\circ}(\vartheta), m\right) \leqslant \varepsilon
$$

or a motion $\varphi_{0}(t)$ for which the position $\left(t, \varphi_{0}(t)\right) \in W_{\varepsilon}$ for all $t \in\left[t_{*}, t^{*}\right]$. Here $v^{(\xi)}(\cdot)$ is a control from class $\left\{E(m(\cdot)),\left[t_{*}, t^{*}\right]\right\}$ [8] such that the instantaneous control $v_{t}^{(\xi)}(\cdot)$ corresponding to it is the probability $\xi(\cdot)$ for almost all $t \in\left[t_{*}, t^{*}\right]$.
To obtain the necessary conditions for the u-stability of sets $W_{\varepsilon}\left(\varepsilon \in\left[\omega_{0}, \omega^{\circ}\right)\right)$ we implement the following auxiliary constructions. Once again let (t_{*}, x_{*}) and (t_{*} $x)$ be such that $t_{*} \in\left[t_{0}, \vartheta_{0}\right)$ and $t \geqslant t_{*}$. Further, let $v_{0}(\cdot) \in \Sigma\left(t_{*}, x_{*}\right)$, let $\bar{v}_{0}(\cdot) \in\left\{E(m(\cdot)),\left[t, \hat{v}_{0}\right]\right\}$ and let it coincide with $\boldsymbol{v}_{0}(\cdot)$ on $\left[t, \hat{\vartheta}_{0}\right] \times Q$, and let

$$
\begin{aligned}
& \bar{\eta}_{0}(\cdot) \in\left\{\Pi\left(\bar{v}_{0}(\cdot)\right), \quad\left[t, \vartheta_{0}\right] \mid t, x\right\}_{0} \\
& \overline{\vartheta^{\circ}} \in \Theta\left(t, x, \bar{\Pi}_{0}(\cdot)\right), \quad \bar{m}_{0} \in M^{\circ}\left(\bar{\eta}_{0}(\cdot), \quad \overline{\vartheta^{\circ}}, t, x\right) \\
& \eta_{0}(\cdot) \in\left\{\Pi\left(v_{0}(\cdot)\right), \quad\left[t_{*}, \hat{\vartheta}_{0}\right]\right\}
\end{aligned}
$$

where the values of measures $\eta_{0}(\cdot)$ and $\bar{\eta}_{0}(\cdot)$ coincide on the Borel subsets of $[t$, $\left.\vartheta_{0}\right] \times P \times Q$. Then

$$
\begin{align*}
& \varepsilon_{0}(t, x)-\varepsilon_{0}\left(t_{*}, x_{*}\right) \geqslant \omega\left(\bar{\vartheta}^{\circ}, \bar{\varphi}_{0}\left(\bar{\vartheta}^{\circ}\right), \bar{m}_{0}\right)-\omega\left(\bar{\vartheta}^{\circ}, \varphi_{0}\left(\bar{\vartheta}^{\circ}\right), \bar{m}_{0}\right) \tag{4.1}\\
& \bar{\varphi}_{0}(\cdot)=\varphi\left(\cdot, t_{*}, x_{*}, \bar{\eta}_{0}(\cdot)\right), \quad \bar{\varphi}_{0}(\cdot)=\varphi\left(\cdot, t, x, \eta_{0}(\cdot)\right)
\end{align*}
$$

We can show that for every position $\left(t_{*}, x_{*}\right), t_{*} \in\left[t_{0}, \vartheta_{0}\right) \backslash \Theta\left(t_{*}, x_{*}\right)$, for any $\alpha>0$ we can find $\delta>0$ such that for any neighboring position $(t, x) \in O_{\delta}\left(t_{*}, x_{*}\right)$

$$
\left.\mid \omega \bar{\vartheta}^{\circ}, \bar{\varphi}_{0}\left(\bar{\vartheta}^{\circ}\right), \bar{m}_{0}\right)-\varepsilon_{0}\left(t_{*}, x_{*}\right) \mid<\alpha
$$

for an arbitrary choice of $v_{0}(\cdot), \bar{\eta}_{0}(\cdot), \overline{\vartheta^{0}}$ and \bar{m}_{0} from the appropriate sets. Therefore, for every position (t_{*}, x_{*}) satisfying (3.1) and for any adjacent position (t, x) from a sufficiently small right δ-semineighborhood of (t_{*}, x_{*}) we can determine, for each control $v_{0}(\cdot) \in \Sigma\left(t_{*}, x_{*}\right)$, the set $S^{*}\left(t, x \mid t_{*}, x_{*}, v_{0}(\cdot)\right)$ of all vectors s

$$
s^{\prime}=\left[\frac{\partial}{\partial x} \omega\left(\overline{\vartheta^{0}}, \bar{\varphi}_{0}\left(\overline{\vartheta^{\circ}}\right), \overline{m_{0}}\right)\right] S\left(\overline{\vartheta^{\circ}}, t, \bar{\varphi}_{0}(\cdot), \bar{\eta}_{0}(\cdot)\right)
$$

Lemma 4.1. For any position (t_{*}, x_{*}) satisfying (3.1) and any control $v_{0}(\cdot) \in \Sigma\left(t_{*}, x_{*}\right)$, for every $\alpha>0$ we can find $\delta>0$ such that

$$
S^{*}\left(t, x \mid t_{*}, x_{*}, v_{0}(\cdot)\right) \subset S_{0}^{\alpha}\left(t_{*}, x_{*}, v_{0}(\cdot)\right)
$$

for each position $(t, x) \in O_{\delta}\left(t_{*}, x_{*}\right)$.
Theorem 4.2. Let the set W_{ε} be u-stable for every $\varepsilon \in\left[\omega_{0}, \omega^{\circ}\right)$. Then for each position (t_{*}, x_{*}) satisfying (3.1) and for any probability $\xi(\cdot)$ on Q there exists a probability $\mu(\cdot)$ on $P \times Q$, consistent with $\xi(\cdot)$, such that

$$
\begin{align*}
& \min _{\mathrm{S}_{0}\left(t_{*}, x_{*}, v_{0}(\cdot)\right)}\left[s_{0} \int_{P} \int_{Q} f\left(t_{*}, x_{*}, u, v\right) \times\right. \tag{4.2}\\
& \left.\quad \mu(d u \times d v)-\max _{Q} \min _{P} s_{0}^{\prime} f\left(t_{*}, x_{*}, u, v\right)\right] \leqslant 0
\end{align*}
$$

for each control $v_{0}(\cdot) \in \Sigma\left(t_{*}, x_{*}\right)$.
Plan of the proof. For every position satisfying the lemma's conditions there exists an instant $\tau^{*}>t_{*}$ such that for every preselected probability $\xi(\cdot)$ the inequality

$$
\min _{\ominus \cap\left[t_{*}, *^{*}\right]} \min _{M_{\vartheta}} \omega\left(\vartheta, \varphi, \vartheta\left(\vartheta, t_{*}, x_{*}, \eta(\cdot)\right), m\right)>\varepsilon_{0}\left(t_{*}, x_{*}\right)
$$

is fulfilled for any program motion $\varphi\left(t, t_{*}, x_{*}, \eta(\cdot)\right)$ for which $\eta_{t}(P \times B)=\xi(B)$ for any Borel subsets of Q. By the definition of u-stability we conclude that for each probability $\xi(\cdot)$ there must exist a control $\eta^{*}(\cdot)$, consistent with $\xi(\cdot)$, such that

$$
\varepsilon_{0}\left(t, \varphi\left(t, t_{*}, x_{*}, \eta^{*}(\cdot)\right)\right) \leqslant \varepsilon_{0}\left(t_{*}, x_{*}\right) \text { for all } t \in\left[t_{*}, \tau^{*}\right]
$$

Assume that the theorem is incorrect. Then, with due regard to what we have said above, at the position (t_{*}, x_{*}) where (4.2) is violated for some $\xi(\cdot)$ and $v_{0}(\cdot)$, for some sequence $\left\{\tau_{n}\right\}$ converging to t_{*} from the right ($\tau_{n}>t_{*}$), we can use estimate (4.1) just under that control $v_{0}(\cdot)$ by which condition (4.2) is violated for a preselected $\xi(\cdot)$. But then, allowing for the differentiability of function $\omega(\cdot)$ with respect to x and for Lemma 4 . 1 , for sufficiently large n we obtain

$$
\varepsilon_{0}\left(\tau_{n}, x_{n}\right)>\varepsilon_{0}\left(t_{*}, x_{*}\right), \quad x_{n}=\boldsymbol{\varphi}\left(\tau_{n}, t_{*}, x_{*}, \eta^{*}(\cdot)\right)
$$

Corollary. Suppose that under each control $v_{0}(\cdot) \in \Sigma\left(t_{*}, x_{*}\right)$ the set $S_{0}\left(t_{*}\right.$, $\left.x_{*}, v_{0}(\cdot)\right)$ consists of the single vector $s_{0}=s_{0}\left(t_{*}, x_{*}, v_{0}(\cdot)\right)$ for every position (t_{*}, x_{*}) satisfying (3.1). The Condition B is necessary and sufficient for the sets W_{ε} to be u-stable for any $\varepsilon \in\left[\omega_{0}, \omega^{\circ}\right)$.
5. Let U^{e} be the strategy extremal [2] to set W_{E} and let $U_{v}{ }^{e}$ be the counterstrategy [8] extremal to that same set.

Theorem 5.1. Let $\varepsilon=\varepsilon_{0}\left(t_{0}, x_{0}\right) \in\left[\omega_{0}, \omega^{\circ}\right)$ and let Conditions A, B be fulfilled. Then, under the condition that a saddle point with respect to (u, v) exists in the small game [2], the strategy $U^{\circ}=U^{e}$ extremal to set W_{ε} solves Problem 1 by guaranteeing the fulfillment of (1,1).

Theorem 5.2. Let $\varepsilon=\varepsilon_{0}\left(t_{0}, x_{0}\right) \in\left[\omega_{0}, \omega^{\circ}\right)$ and let Conditions A, B be fulfilled. Then the counterstrategy $U_{v}{ }^{\circ}=U_{v}{ }^{e}$ extremal to set W_{ε} solves Problem 1 by guaranteeing here the fulfillment of (1.2).

For the control $v_{0}(\cdot) \in \Sigma\left(t_{0}, x_{0}\right)$ we form the set $W\left(v_{0}(\cdot)\right)$ of all positions (t, w)

$$
w=\varphi\left(t, t_{0}, x_{0}, \eta(\cdot)\right), \quad \eta(\cdot) \in\left\{\Pi\left(v_{0}(\cdot)\right),\left[t_{0}, \mathfrak{\vartheta}_{0}\right]\right\}
$$

Let V^{e} be the second player's strategy [8], extremal [2] to set $W\left(v_{0}(\cdot)\right)$.
Theorem 5.3. Strategy V^{e} ensures the solution of Problem 3 for any $\varepsilon \leqslant \varepsilon_{0}\left(t_{0}\right.$, x_{0}).
Plan of the proof. Let $x_{\Delta^{(i)}}[t]$ be an Euler polygonal line corresponding to the strategy V^{e} and let $\tau_{k}{ }^{(i)}=t_{*}$ be a node of the partitioning $\Delta^{(i)}$, and

$$
\begin{aligned}
& x_{*}=x_{\Delta^{(i)}}\left[t_{*}\right] \equiv W_{t_{*}}\left(v_{0}(\cdot)\right) \\
& W_{t_{*}}\left(v_{0}(\cdot)\right)=\left\{w:\left(t_{*}, w\right) \in W\left(v_{0}(\cdot)\right)\right\}
\end{aligned}
$$

In addition, let $v^{e}=v\left[t_{*}\right], u[t]$ be the control realizing the given Euler polygonal line, s be the vector $w^{\circ}-x_{*}$, where w° is a point of set $W_{i *}\left(v_{0}(\cdot)\right)$ closest to x_{*} in the

Euclidean metric and

$$
\min _{P} s^{\prime} f\left(t_{*}, x_{*}, u, v^{e}\right)=\max _{Q} \min _{R} s^{\prime} f\left(t_{*}, x_{*}, u, v\right)
$$

Then, in the program $\left\{\Pi\left(v_{0}(\cdot)\right),\left[\tau_{k}^{(i)}, \tau_{i+1}^{(i)}\right]\right\}$ we can find a control $\eta^{*}(\cdot)$ such that

$$
s^{\prime} \int_{t_{*}}^{t} \int_{P} \int_{Q} f\left(t_{*}, x_{*}, u, v\right) \eta^{*}(d \tau \times d u \times d v)=\int_{t_{*}}^{t} \int_{Q} \min _{P}\left[s^{\prime} f\left(t_{*}, x_{*}, u, v\right)\right] v_{0}(d \tau \times d v)
$$

for every $t \in\left[\tau_{k}{ }^{(i)}, \tau_{k+1}^{(i)}\right]$. Hence, with due regard to the inequalities

$$
\begin{aligned}
s^{\prime} & \int_{t_{*}}^{t} f\left(t_{*}, x_{*}, u[\tau], v^{e}\right) m(d \tau) \geqslant \int_{i_{*}}^{t} \max _{Q} \min _{P}\left[s^{\prime} f\left(t_{*}, x_{*}, u, v\right)\right] m(d \tau) \geqslant \\
& \int_{i_{*}}^{t} \int_{Q} \min _{P}\left[s^{\prime} f\left(t_{*}, x_{*}, u, v\right)\right] v_{0}(d \tau \times d v)
\end{aligned}
$$

we derive a local estimate analogous to the one used in [4]. From this estimate, in analogy with [4], we derive the barrier properties of strategy V^{e}.

Theorem 5.4. Let $\varepsilon=\varepsilon_{0}\left(t_{0}, x_{0}\right) \in\left[\omega_{0}, \omega^{\circ}\right)$ and let Conditions A, B and the small game saddle point condition be fulfilled. Then the pair of strategies ($U^{\circ}=U^{e}$, $\left.V^{\circ}=V^{e}\right)$ solves Problem 2. Here $\varepsilon=\varepsilon_{0}\left(t_{0}, x_{0}\right)$ is the value of the game in pure strategies.

Problems 1-3 admit of an intuitive representation when M is a closed subset of $\Theta \times R^{n}$, and $\omega(\vartheta, x, m)=\|x-m\|$. The possible noncompactness of M is unessential here since the problem reduces to an encounter-evasion problem with some compact subset of M.

The author thanks $\mathrm{N} . \mathrm{N}$. Krasovskii for his constant attention to the work.

REFERENCES

1. Krasovskii, N. N., Game Problems on the Contact of Motions, Moscow, "Nauka", 1970.
2. Krasovskii, N. N., A differential game of encounter-evasion, I, II. Izv. Akad. Nauk SSSR, Tekhn. Kibernetika, $\mathrm{N}^{8} \mathrm{~N}^{2} 2,3,1973$.
3. Batukhtin, V.D. and Krasovskii, N. N., Problem of program control by maximin. Izv. Akad. Nauk SSSR, Tekhn. Kibernetika, N* $6,1972$.
4. Krasovskii, N. N. and Subbotin, A.I., An alternative for the game problem of convergence. PMM Vol. 34, No $6,1970$.
5. Pshenichnyi, B. N., Structure of differential games. In: Theory of Optimal Solutions, № 1, Kiev, 1968.
6. Pontriagin, L.S., Boltianskii, V. G., Gamkrelidze, R. V. and Mishchenko, E.F., The Mathematical Theory of Optimal Processes. (English translation), Pergamon Press, Book Ni 10176, 1964.
7. Chentsov, A. G., On a game problem of program control, Dok1, Akad. Nauk SSSR, Vol. 213, N2, 1973.
8. Chentsov, A.G., On encounter-evasion game problems. PMM Vol, 38, $\mathrm{N}^{2} 2$, 1974.
